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Abstract 

We propose a new metamodeling method to characterize 
the output (response) random process of a dynamic system 
with random parameters, excited by input random processes. 
The metamodel can be then used to efficiently estimate the 
time-dependent reliability of a dynamic system using analytical 
or simulation-based methods. The metamodel is constructed 
by decomposing the input random processes using principal 
components or wavelets and then using a few simulations to 
estimate the distributions of the decomposition coefficients. A 
similar decomposition is also performed on the output random 
process. A kriging model is then established between the input 
and output decomposition coefficients and subsequently used 
to quantify the output random process corresponding to a 
realization of the input random parameters and random 
processes. What distinguishes our approach from others in 
metamodeling is that the system input is not deterministic but 
random. The quantified output random process is finally used 
to estimate the time-dependent reliability or probability of 
failure of the dynamic system using the total probability 
theorem. The proposed method is illustrated with a numerical 
example. 

1. Introduction 

The response of dynamic systems under uncertainty is 
described by a random process. The input commonly consists 
of a combination of random variables and random processes. 
A time-dependent reliability analysis is therefore, needed to 
calculate the probability that the system will perform its 
intended function successfully for a specified time. It is 
therefore, related to product functionality over time. 

Reliability is an important engineering requirement for 
consistently delivering acceptable product performance 
through time. As time progresses, the product may fail due to 
time-dependent operating conditions and material properties, 
component degradation, etc. In this research, we use time-
dependent reliability concepts associated with the first-passage 
of non-repairable systems.  

The time-dependent probability of failure, or cumulative 
probability of failure [1, 2], is defined as 

       t,,:,0,0 SttgTtPTfP  Zβ             (1) 

where g  is a random process that maps the input random 

variables β and random processes  tZ  to a response of 

interest and tS  is a given threshold value. The random 

process      t,, SttgtG  Zβ  can be viewed as a collection 

of random variables at different time instances t. Since we 

consider a first excursion failure problem in Equation (1), the 

failure domain is defined as 
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The time-dependent probability of failure of Equation (1) 
can be calculated exactly as  
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failure rate with fT  denoting the time to failure. In the 

commonly used out-crossing rate approach, the failure rate is 
approximated by the up-crossing rate  
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under the assumptions that  the probability of having two or 

more out-crossings in  ttt ,  is negligible, and the out-

crossings in  ttt ,  are statistically independent of the 

previous out-crossings in  t,0 .  

Monte Carlo simulation (MCS) can accurately estimate the 
probability of failure in Equation (1) but it is computationally 
prohibitive for dynamic systems with a low failure probability. To 
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address the computational issue of MCS, analytical methods 
have been developed based on the out-crossing rate approach 
which was first introduced by Rice [3] followed by extensive 
studies [2, 4-6] under the assumption that the out-crossings 
are statistically independent and Poisson distributed. The PHI2 
method [2] uses two successive time-invariant analyses based 
on FORM, and the binomial cumulative distribution to calculate 
the probability of the joint event in Equation (3). A Monte-Carlo 
based set theory approach has been also proposed [7, 8] using 
a similar approach with the PHI2 method. Because, analytical 
studies (e.g., [9-11]) have shown that the PHI2 based approach 
lacks sufficient accuracy for vibratory systems, analytical 
approaches have been proposed to accurately estimate the 
time-dependent probability of failure considering non-
monotonic behavior [9, 12, 13]. 

The limited accuracy of the out-crossing rate approach 
has been recently improved by considering the correlations 
between the limit-state function at two time instants [11]. The 

method estimates the up-crossing rate  t
  by solving an 

integral equation involving  t
  and  1, tt


 , the joint 

probability of up-crossings in times t and 1t  [14].  

Among the simulation-based methods, a MCS approach 
was proposed in [15] to estimate the time-dependent failure 
rate over the product lifecycle and its efficiency was improved 
using an importance sampling method with a decorrelation 
length [16] in order to reduce the high dimensionality of the 
problem. Subset simulation [17, 18] has been recently 
developed as an efficient simulation method for computing 
small failure probabilities for general reliability problems. Its 
efficiency comes from introducing appropriate intermediate 
failure sub-domains to express the low probability of failure as 
a product of larger conditional failure probabilities which are 
estimated with much less computational effort. Because it is 
very challenging to generate samples in the conditional 
spaces, subset simulation with Markov Chain Monte Carlo 
(SS/MCMC) [19] and subset simulation with splitting (SS/S) 
[20, 21] methods have been introduced.  

 In this paper, we describe a new metamodeling method to 
characterize the output random process of a dynamic system 
with random parameters, excited by input random processes 
which can be used to efficiently estimate the time-dependent 
probability of failure using either analytical or simulation-based 
methods. The metamodel is constructed by decomposing the 
input random processes using principal components or 
wavelets and then using a few simulations to estimate the 
distributions of the decomposition coefficients. A similar 
decomposition is also performed on the output random 
process. A kriging model is then established between the input 
and output decomposition coefficients and subsequently used 
to quantify the output random process corresponding to a 
realization of the input random parameters and random 
processes. The proposed approach is new because it 
considers the system input as random and not deterministic as 
is usually the case.  

The paper is arranged as follows. Section 2 describes the 
proposed metamodeling methodology and Section 3 uses a 
mathematical example to demonstrate its applicability. Finally, 
Section 4 provides a brief summary and concludes. 

2. PROPOSED METAMODELING 
APPROACH 

Assume that the simulation model has two types of inputs: 
random time-dependent inputs represented by the random 
processes ( t)Z and random time-independent inputs 

represented by random variables β. Assume that the output is 

also time-dependent and is represented by the random 
processes ( t)Y . We decompose each process Z(t)using a 

well-defined basis of functions )(tB such as wavelets or 

principal components. For principal components, consider D 
realizations of the random process Z(t)denoted by

( t)DZ(t)Z ,...,1
. An eigenvalue decomposition of their 

covariance matrix defines the principal components. If we 

retain a small number r of dominant eigenvalues and )(t1B is a 

vector whose rows are the corresponding eigenvectors, each 

Dj(t)jZ ,,1,  can be expressed as 

  )(
1 1 tj

r

i
tiBi( t)=jZ 1Bα


 where

T
t(t) jZj )(1Bα  . A 

similar principal decomposition can be considered for the 

output process Y(t) so that each output realization (sample 

function) Dj(t)jY ,,1,   can be expressed as 

  )(
1 2 tj

s

i
tiBi( t)=jY 2Bδ


  using basis functions )(t2B and 

T
t(t) jYj )(2Bδ  , if we retain a small number s of dominant 

eigenvalues of the output covariance matrix.  

To simplify the description of the proposed method, we 
assume that we have only one input random variable β, one 
input random process Z(t), and one output random process 

Y(t) which is represented with only one principal component. 

The input vector can be therefore, expressed in terms of the 

vector (α, β) where α =  r ,,2,1   and the output is 

expressed in terms of 1 . We use the principal component 

decomposition in this paper although other bases may be 
chosen (e.g. wavelets). 

What distinguishes our approach from others in 
metamodeling is that the input vector (α, β) is not deterministic 
but random. The distributions of all components of (α, β) are 

estimated using a small number of computer runs. If we 
assume that all αi’s are independent and normally distributed 
as N(µi , σi

2
) where µi is the mean of αi over all performed 

computer runs and σi is the standard error of αi over all 
computer runs, and also assume that β is a normal random 
variable with mean µβ and standard error σβ, independent of 
the α’s, the joint probability density function between α and β is 

given by 
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We run the mathematical model for D input vectors (α
(1)

, 
β

(1)
), … ,  (α

(D)
, β

(D)
) and obtain the corresponding time-

dependent outputs whose first principal component is (δ
(1)

,…, 
δ

(D)
). Denote the vectors α =(α

(1)
,…, α

(D)
), β=(β

(1)
,…, β

(D)
) and δ 

= (δ
(1)

,…, δ
(D)

). Conditioned on (α, β), the vector δ has a 

multivariate Gaussian distribution with mean  1 and 

covariance matrix C
2

  where C  is a Gaussian correlation 

matrix whose elements depend on the distances between 
sampled inputs (α, β). The parameters of this distribution are 

estimated by maximum likelihood.  

Let  0,0 α  be a new input vector and δ0 the 

corresponding output first principal component. A kriging 
metamodel is generated between the input (α, β) and the 
output δ to obtain δ0. Details about kriging metamodeling can 

be found, for example, in [22-24]. The kriging Gaussian 

prediction distribution ),|0(ˆ βαf for δ0, is given by 
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where the prediction variance is   0
1

01
20

, CCCβα
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and the prediction mean is  1δCCβα  
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0
0

,
T

m . Here 

0C is the vector of correlations between the new input and the 

sampled inputs.  The joint distribution of βα,,0  is  

 ),(),|0(ˆ),,0(ˆ βαβαβα fff    
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The marginal distribution of 0  at the new input vector 

 0,0 α  is given by the integral 

βαβα ddff  ),,0(ˆ)0(ˆ  .                 (7) 

Note that the typically small number of runs performed in 
an engineering problem is used only to estimate the 

distributions ),( βαf and ),|0(ˆ βαf of Equations (4) and (5), 

respectively. Once these distributions are estimated, a larger 

number N of statistical simulations from the distribution )0(ˆ f

of Equation (7) can be obtained. For each simulated 0  we 

create a simulated output function )(200
ˆ tB(t) = Y  .  

We now provide some details on the evaluation of integral 
in Equation (7). Consider R sampled sets of D input vectors

R),(,...,1),( βαβα . The integral is approximated using the 

Monte Carlo method, up to a proportionality constant, as  
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k kfkf
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1
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While )),(( kf βα  can be computed easily for any number R of 

sets, )),(|0(ˆ kf βα  will require running the mathematical 

model R*D times; i.e., for each set ],),[( γβα k of D input 

vectors. This is computationally very demanding. Instead, we 
use a jackknife method (e.g. [25]), which belongs to the 
general class of “leave-one-out” methods for cross-validation. 

Specifically, we choose R=D and )
)(

,
)(

(:),(
kk

k


 βαβα , 

meaning that we replace 
k),( βα  by the set of D original input 

vectors βα,  from which we leave the k
th

 input vector out, for k 

= 1,…,D. The advantage of this method is that we already have 

data from math model runs at these )
)(

,
)(

(
kk 

βα  vectors, 

and we do not need any additional math model runs.  

The total probability theorem is used to compute the time-
dependent probability of failure. We draw M new random 

inputs  0,0 α from the input distribution ),( αf of Equation 

(4) and for each of them simulate N output random functions

( t)Y0
ˆ by sampling )0(ˆ f of Equation (7) N times. For each of 

the M random inputs  0,0 α , a simple Monte Carlo 

simulation is used to calculate a probability of failure  tM
fP ,0  

using the N output functions ( t)Y0
ˆ . It can be easily shown 

using the total probability theorem that the probability of failure 

is the average among the  tM
fP ,0  probabilities; i.e., 

   



M

i
t

M
fP

M
tfP

1
,0

1
,0 . Therefore, the time-dependent 

probability of failure is the percentage of the M*N response 

functions ( t)Y0
ˆ  that exceed a specified failure threshold T in 

the interval [0, t]. This probability considers the randomness of 
the inputs Z(t)and β. 

3. EXAMPLE 

Consider the following mathematical model 

      ttZtY 2sin)(exp2            (9) 

where Z(t) is a random process generated from the function 2-
t, to which correlated noise has been added. The correlated 
noise is represented by random draws from a Gaussian 
distribution with a zero mean vector and Gaussian correlation 
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for the temporal dimension of smoothness parameter 25. The 
random parameter β is normally distributed as N(2, 0.05). 

A sample of D = 30 computer runs is obtained (Figure 1). 
Figure 1a shows the sample of 30 random input functions Z(t) 

for  2,0t  and Figure 1b shows their principal component 

reconstruction using r = 4 principal components which account 
for approximately 90% of the variance. Figure 1c shows the 
corresponding 30 random output functions Y(t) and Figure 1d  
shows their principal component reconstruction using only the 
first principal component which accounts for about 66% of the 
variability. Visual inspection shows that the time-dependent 
output reconstruction captures the major features of actual 
time-dependent output, even with only the first principal 
component. 

The random input vector is expressed with 5 components: 
the 4 coefficients from the principal component decomposition 
of the input function Z(t) denoted by α  and the β. The time-

dependent output is expressed by a scalar which is the 
dominant principal component coefficient δ. The four 

components of α  are assumed independent and normal, with 

estimated means equal to zero and standard deviations equal 
to 0.9062, 0.8387, 0.6854, and 0.4947, respectively. These 
estimated values are obtained from the sample of 30 computer 
runs. The estimated mean and standard deviation of β are 
1.9997 and 0.0531 respectively, which are in agreement with 
the theoretical values of 2 and 0.05. The scatter plots of Figure 
2 verify the assumption that the four components of α  are 

independent. 

We have developed a metamodel using the proposed 
approach using M = 100 new random inputs drawn from the 
input distribution and N = 50 simulations for each of these new 

random inputs. Therefore, we have a total of 5,000 simulations 

( t)Y0
ˆ shown in green in the left panel of Figure 3. We observe 

that the variability of these curves appears to be similar with 
the variability of the 30 actual math model output curves 
(Figure 1c) or their principal components reconstructions 
(Figure 1d). However, their number is 5,000 (much greater 
than 30), which allows for a more accurate evaluation of the 
probability of failure. The right panel of Figure 3 shows the 
time-dependent probability of exceeding the thresholds T of 4, 
6, 7.5, 10 or 15. We observe as expected, that as the threshold 
is increased the time-dependent probability of failure reaches 
its maximum value of 1 at a later time. The accuracy of the 
calculated probabilities of failure can be easily verified using 
Monte Carlo simulation. 

 
Figure 1a. A sample of 30 random input functions Z(t) 

  
Figure 1b. Principal component reconstruction using r = 4 

  
Figure 1c. Corresponding 30 random output functions Y(t)  

  
Figure 1d. Principal component reconstruction 
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Figure 2. Scatter plots of the four components of vector α  

 

Figure 3.  Metamodel simulations (left panel) and time-dependent probability for different thresholds (right panel) 
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4. Summary/Conclusions 

We described in this paper a new metamodeling approach 
to characterize the output random process of a dynamic (or 
time-dependent in general) system with random input 
parameters, excited by an input random process. The 
methodology utilizes a decomposition of the input and output 
random processes using principal components or wavelets and 
kriging. The latter establishes a non-parametric interpolation 
between the input and output decomposition coefficients which 
is then used to quantify the output random process. The 
metamodel is used to efficiently estimate the time-dependent 
probability of failure using either analytical or simulation-based 
methods. This capability is very practical and desirable for 
large-scale, linear or non-linear, dynamic systems where the 
calculation of response is time intensive and/or expensive to 
compute or measure. The proposed approach considers the 
system input as random and not deterministic as is usually the 
case. We used a simple mathematical example to demonstrate 
the steps of the approach and demonstrate its practicality. 
Future work will generalize the method for non-Gaussian 
random variables and processes. 
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